Details zu Lochkreismustern bei Kettenblättern: Unterschied zwischen den Versionen

Aus WikiPedalia
(→‎Siehe auch: ergänzt)
Zeile 85: Zeile 85:


== Siehe auch ==
== Siehe auch ==
* [[Lochkreisdurchmesser von Kurbeln (Tabelle)]]
* [https://cdn-0.sheldonbrown.com/images/chainring-dimensions-small.png Eine Seite aus der JIS Norm D 9415, auf der die Kettenblattmaße spezifiziert werden (Website von Sheldon Brown/JPG/English)]
* [https://cdn-0.sheldonbrown.com/images/chainring-dimensions-small.png Eine Seite aus der JIS Norm D 9415, auf der die Kettenblattmaße spezifiziert werden (Website von Sheldon Brown/JPG/English)]
*  [https://www.wolftoothcomponents.com/ WolfTooth (englisch)]
*  [https://www.wolftoothcomponents.com/ WolfTooth (englisch)]

Version vom 13. April 2021, 07:53 Uhr

Die meisten Kettenblätter haben zwischen drei und sechs Löcher, mittels derer sie mit der Kurbel entlang eines Lochkreismusters verschraubt werden. Dieser Artikel beschreibt die Details dieser Lochkreismuster und sollte in zusammenhang mit dem Artikel Lochkreisdurchmesser von Kurbeln (Tabelle) gelesen werden.


Faktoren, die die Austauschbarkeit bestimmen

Ein Kettenblatt und eine Kurbel mit unterschiedlichen Lochkreismustern sind definitiv nicht kompatibel. Jedoch das Lochkreismuster alleine sagt nicht genug über die Kompatibilität aus. Lochkreisdurchmesser, Gewinde, dicke der Zähne und die Schalthilfen können voneinander Abweichen. Manchmal kann man ein solches Problem lösen, indem man die Innenseite des Kettenblatts nach Außen montiert und man mit Unterlegscheiben die Abstände zwischen Kettenblättern einstellt. Oder man bohrt die Schraubenlöcher zu größeren Durchmessern auf, um ein Kettenblatt passend zu machen. Prüfe auf folgende Sachverhalte:

  • Die meisten Vier- und Fünf-Loch-Kettenblätter nutzen 10 mm Schraubenlöcher. Jedoch haben manche nur 8 mm Löcher und ein Gewinde. Die meisten Drei- und Sechs-Loch-Kettenblätter haben sieben bis neun Millimeter Schraubenlöcher.
  • das Gebinde aus Kettenblättern/Kettenblatt, Kurbelspider und Unterlegscheiben muss lang genug sein, so dass die Kurbelschrauben und Kurbelschraubenhülsen gegen das Kettenblatt/die Kettenblätter festziehen, ohne dass sie komplett ineinander verschraubt werden. Dieses Problem tritt zumeist auf, wenn man nur ein Kettenblatt mit einer Kettenblattschraubenhülse verwendet, die für zwei Kettenblätter ausgelegt ist. Hier muss man entweder das Kettenblatt herumdrehen, so dass der Kragen der Schraube nicht in die Versenkung hineingeht oder man benötigt zusätzliche Unterlegscheiben unter dem Kragen der Hülse.
  • Die Zähne des Kettenblatts zeigen möglicherweise nach Außen, nach Innen oder wechseln sich ab. Der Schaltvorgang am Kettenblatt ist am besten, wenn die Zähne des äußeren Kettenblatts nach innen geneigt sind oder die Innenseite hat eine leichte Abschrägung, die in Richtung der Zähne geneigt ist, so dass die Kette mitgerissen wird, wenn sie sich beim Hochschalten den Zähnen nähert.
  • Ein Kettenblatt mit abwechselnd breiten und schmalen Zähnen kann nur als einzelnes Kettenblatt in einem 1xX System eingesetzt werden, weil die Kette nach dem Abwerfen nicht korrekt auf dem nächsten Kettenblatt landen würde.
  • Die meisten Kettenblätter ziehen die Kette in beide Laufrichtungen gleich gut. Jedoch gibt es speziell geformte Zähne, die eine Kette nur in eine Richtung gut mitnehmen.
  • Ein Kettenblatt für schmale Ketten kann auch mit einer breiteren kette genutzt werden. Jedoch müssen die Abstände zwischen den Kettenblättern möglicherweise richtig eingestellt werden, damit der Schaltvorgang sauber funktioniert.
  • Kettenblätter für breitere Ketten können mit leicht zu schmalen Ketten eingesetzt werden. Jedoch müssen die Kettenblätter enger zusammenstehen, damit der Schaltvorgang sauber funktioniert.
  • Rampen und Zähne, die als Schalthilfen dienen, sind bei den Kettenblättern aufeinander abgestimmt. Kettenblätter ohne Schalthilfen funktionieren besser mit alten Ketten, bei denen die Nieten leicht hervorstehen.

Nachdem du den Lochkreisdurchmesser bestimmt hast, kannst Du Dich auch bei WolfTooth (englisch) über neuere Straßen- und MTB-Kettenblätter mit Vier- und Fünf-Loch-Befestigungen informieren. Genauso interessant dürft die Kaompatibiltätstabelle von RaceFace (pdf/englisch) diesbezüglich sein. Etwas weiter unten auf der Seite von WolfTooth werden die Aufnahmesysteme von Direct-Mount-Kettenblättern beschrieben (englisch) (Montage ohne Spider).

Früher hatten alle Kettenblätter gleichmäßig verteilte Schraubenlöcher entlang des Lochkreises. Etwa seit 2010 gingen hersteller dazu über, Lochmuster einzuführen, deren Muster unregelmäßig verteilt waren. So können Schraubenköpfe in einem Muster kleinen Lochkreisduchmessers an breiten Kurbeln geschickt vorbei platziert und eine eindeutige Kettenblattausrichtung erzwungen werden. Das ist insbesondere bei Kettenblättern mit Schalthilfen wichtig, damit der Schaltvorgang geschmeidiger verläuft.

Die Kraftentfaltung während einer Pedalumdrehung hat zwei Hochs und zwei Tiefs. Kettenblätter mit ungleichmäßigen Lochkreismustern verhindern, dass man das Kettenblatt umorientieren kann, um die verschleißbedingte Lebensdauer des Kettenblatts zu erhöhen. Manche Muster sind geschützt und können daher nur von einer Herstellermarke bedient werden. Andere Muster können durch mehrere Hersteller bedient werden. WolfTooth erklärt die Inkompatibilität des CAMO Systems mit anderen Herstellern wie folgt:

Das CAMO Kettenblatt kann nur in einer einzigen Orientierung mit der rechten Seite nach außen gerichtet montiert werden. So wird verhindert, dass das ovale Kettenblatt zufälligerweise in der falschen Orientierung oder ein asymmetrisches Kettenblatt rückwärts laufend montiert wird. Ein weiteres wichtiges Detail ist, dass das CAMO Kettenblatt keine konventionellen Kettenblattschrauben nutzt.

WolfTooth und FSA stellen Kettenblätter her, die sowohl auf die Kurbeln anderer Hersteller als auch ausschließlich auf eigene Kurbeln passen. Auf der Website pardo.net findet sich eine Diskussion zu technischen Details, Preisinformationen und Verfügbarkeitsinformationen zu Kettenblättern mit ungleichmäßigen Lochkreismustern (englisch).

Lochkreisdurchmesser-Dimensionen, die hier für gleichmäßige Lochkreis-Muster wiedergegeben werden, sind trigonometrisch berechnet und sind mit exakten Winkelangaben versehen. Bei ungleichmäßigen Lochkreis-Mustern werden geradzahlige Winkelangaben angegeben, von denen einige noch zu verifizieren sind. Die gemessenen Winkel aller Shimano Vier-Loch-Kettenblättern mit ungleichmäßigen Lochmustern waren alle so nahe an 70° und 110°, dass die Werte so gut wie sicher korrekt sind. SRAM musste sich natürlich etwas anderes ausdenken und die Winkel scheinen sich bei 72° (wie bei Fünf-Loch-Kettenblättern) und 108° zu befinden. Ähnlich ist es bei Campagnolo mit 80° und 100° und unterschiedlichen Lochkreisdurchmessern.

Wenn Du weiterführende oder exaktere Daten hast, melde Dich bei uns und wir lassen die Daten ändern. Auf der Website von Sheldon Brown gibt es eine Excel-Tabelle mit allen Dimensionen, die auf dieser Seite Verwendung finden.

Vielen Dank an Ulrik Hansen und Samuel He für Aktualisierungen der Vier-Loch-Kurbel-Liste und an WolfTooth wegen der Bestätigung der CAMO Maße.

Schalthilfen

Warum ungleichmäßig verteilte Schraubenlöchermuster?

Many newer chainrings have unevenly-spaced bolt holes, the main reason for new entries in our list. There are a couple of good reasons for uneven bolt-hole spacing:

  • chainrings with pins and ramps can be installed only in the correct orientation for smooth shifting;
  • bolts in a small bolt circle can clear a wide crank.

But there is also brand lock when different manufacturers adopt different specifications. And a couple of technical problems also result:

  • Elliptical chainrings may work best in different orientations. Orientation probably should be different on a recumbent. Many elliptical chainrings produced these days work opposite the way that Shimano Biopace chainrings did -- see https://sheldonbrown.com/biopace.html.
  • Pins and ramps involve some compromises. Though teeth may align multiple times around a pair of chainrings, shifting is best near the dead centers of crank rotation, to minimize stress on the front derailer and disruption of pedaling cadence. To meet these criteria, there can be only two sets of pins and ramps opposite each other, and chainrings must differ by a multiple of two teeth. This requirement is met, for example, by a 52-36 or 50-34 racing double pair of chainrings. Chainrings with preferred orientations for shifting cannot be rotated on the crank spider during overhauls to increase wear life. It is conceivable that this problem could be solved using threaded pins that can be removed and reinstalled, but I don't know of any manufacturer offering this feature.
einfaches Kettenblatt ohne Schalthilfen

Introducing a novel bolt pattern is easier than it once was .Chainrings used to be stamped out in a huge punch-press machine, like cookies with a cookie cutter, then lightly milled to reduce the thickness of the teeth and to drill mounting holes. Teeth of a 1X chainringA large number of chainrings had to be produced in each size to justify the tooling cost, but unit cost was low. Now, on the other hand, anyone with computer-aided design software and a computer-aided milling machine can establish a new bolt pattern at low cost -- but the unit cost is higher.

The popularity of multi-speed 1X ("one-by") systems -- those without a front derailer -- also has led to innovation. In a 1X system, the wider space between the outer plates of a chain lets every second chainring tooth be wider, offering some advantage in preventing the chain from coming off, and in the wear on the sides of teeth being taken by twice as many teeth. There is no additional bearing area for chain tension though, as the rollers of the chain have to fit between the inner plates. Chainrings with wide-narrow teeth are possible only with even numbers of teeth, and are practical only in a 1X system, because a chain could land the wrong way when shifted.

All in all though,fewer bolt patterns are currently made the early 21st century than in the mid-to late 20th century, as many legendary manufacturers have dropped out of the market, been bought up, or adopted bolt hole patterns from the largest manufacturers.

Messen oder Rechnen?

I started my work reviewing the bolt-circle diameter table by reviewing the entries with known bolt-circle diameters and evenly-spaced holes. Their spacing can be determined with trigonometry. I found small errors in published distances on our list and in other references. Evidently, people had taken measurements and never checked them with math. I corrected errors where I found them.

For uneven patterns, measurement and calculation are more complicated. Buying a sample of every kind of chainring would have bankrupted me. So, for some chainrings, I had to use manufacturers' specifications, or reverse-engineer geometric constructions from manufacturers' photos. This is trickier. How can it be done?

Berechnen der Skalierung aus einem Foto

While bolt-circle diameters vary, the geometry of the tooth circle of all round bicycle chainrings adheres to a fixed pattern, as the pitch of the chain and the diameter of its rollers are the same. The tops of teeth may stand at different heights, but the gaps between teeth are at the same diameter, within tight tolerances, for any chainring with the same number of teeth. The diameter between gaps opposite one another may be calculated based on the dimensional standards, and he correctness of the calculation may be confirmed by measuring an actual chainring with an even number of teeth. I did both and checked with a 1982 Japanese Industrial Standards manual. You may find my calculations in the Microsoft Excel workbook here. And here is the page from the JIS manual.

Wie man Lochkreismaße berechnet

To find the bolt-circle dimensions of a chainring, I copy the manufacturer's photo of it onto a letter-size sheet of paper, as large as I can make it. To confirm that the plane of the camera sensor was parallel to that of the chainring, I find the center -- the intersection of two lines between opposite points on the chainring. This is easy if the chainring has an even number of teeth. Placing a straightedge at the edge of opposing teeth makes for high accuracy. Then I measure the distance out to the bolt holes from the center. If the camera sensor and chainring plane were parallel, radial distances will be the same. Most chainrings have all bolt holes at the same radius, making it possible to take an average. If the differences among measured radii are at all substantial, I reject the photo.

Having confirmed that a photo is usable, I draw the polygon connecting the centers of the bolt holes, and measure the lengths of the sides. For the sake of accuracy, I measure from right side to right side or left side to left side of holes, not between the centers.

If the manufacturer has not given the bolt-circle diameter, I need to determine it. Having established the diameter at gaps between teeth in the photo, I also measure the radial distance inward from the bottom of a gap between teeth to the center of a bolt hole. The ratio between the measurement in the photo and the calculated dimension establishes the scale of the photo. The image below gives an example of this geometric construction.

The bolt circle diameter at the scale of the photo is the distance between gaps, minus twice the radial distance from a gap to the center of a bolt hole. I determine the bolt-circle diameter by multiplying by the ratio of actual spacing between gaps to the one in the photo.

The image below shows my measurements of a photo of a Wolf Tooth CAMO series chainring, which has subtly uneven bolt-hole spacing. I calculated the bolt-circle diameter and angles of the bolt holes based on measurements like the ones shown, using photos of several CAMO chainrings on the Wolf Tooth Web site.

Having done this for several chainrings with the same bolt-hole pattern, I can take an average, and then make an adjustment based on the probability that bolt holes are spaced at integer numbers of degrees from one another.

I sent results to Wolf Tooth and received confirmation that they were correct, validating my method and allowing me to trust it as I applied it to other chainrings. I found a few measurements of other chainrings with unevenly-spaced bolt holes on the Wolf Tooth site which further confirmed my measurements.

WolfTooth CAMO Kettenblatt mit Maßen

If the manufacturer has given the bolt-circle diameter, the task of measurement is easier. The scale of the photo can be determined directly from the radii from the center to the bolt holes. The FSA chainring in the photos below is clearly marked as having a 110mm bolt-circle diameter.

FSA Kettenblatt mit Maßen

Results of these calculations are on the bolt-circle diameter cribsheet page and in the templates which my son Jacob has generated. You can print out the templates to check chainring dimensions.

Siehe auch

Quelle

Dieser Artikel basiert auf dem Artikel Understanding Chainring Bolt-hole Patterns von der Website Sheldon Browns. Originalautor des Artikels ist John Allen.