Cookie Consent by Free Privacy Policy Generator

Cantilever Geometrie: Unterschied zwischen den Versionen

Zeile 66: Zeile 66:


==Hebelübersetzungen von Cantilevern==
==Hebelübersetzungen von Cantilevern==
Three separate factors determine the mechanical advantage of any particular cantilever braking system. The total mechanical advantage of the system is the product of all three multiplied together:
Drei separate Faktoren bestimmen die Hebelübersetzung eines jeden Cantilever-Brems Systems. Die verfügbare Gesamthebelübersetzung ist das Produkt aus diesen drei Werten (also alle Werte miteinander multiplizieren):
 
#The first factor is the brake lever itself. The lever's mechanical advantage is determined by the distance from the lever's pivot to the cable end, and by the effective length of the brake lever from its pivot to where the rider's fingers grip it. Typical mountain-bike type brake levers give a mechanical advantage of around 3 1/2, old-style drop-bar levers around 4, and "æro" drop-bar levers around 4 1/2. Levers for direct-pull ("V-type") brakes are around 2.<br><br>Shimano ("Servo-Wave" ®) and Odyssey both make mountain-bike type levers with a variable mechanical advantage that increases as the lever is pulled.
 
;Two distinct aspects of the cantilever system determine its mechanical advantage:


#Die Hebelübersetzung des Bremshebels ist der erste Faktor. Seine Hebelübersetzung bestimmt sich durch die Entfernung vom Gelenk des Hebels zum Zugende. Zusätzlich spielt noch die Länge des Bremsgriffs vom Gelenk bis zu dem Punkt, an dem die Finger des Fahrers greifen eine Rolle. Typische [[Moiuntainbike]]bremsgirffe haben eine Hebelübersetzung von 3,5, veraltete [[Dropbar]]bremsbgriffe hatten etwa 4 und [[Aero]]dropbarbremsgriffe liegen bei ca. 4,5. Bremsgriffe für [[Direktzugbremse]]n haben ungefähr 2.<br>Shimano [[Servo Wave ®]] und [[Odyssey]] Bremsgriffe haben eine variable Hebelübersetzung, die ansteigt, je mehr man den Griff zieht.<br><br>'''Zwei getrennt zu betrachtende Aspakte des Cantilever Systems bestimmen dessen Habelübersetzung:'''
#The individual cantilever's mechanical advantage is the ratio between the pivot-cable distance (PC) and the pivot-shoe distance (PS) . The pivot-cable distance (PC) is at its greatest when the anchor angle is 90 degrees, so that PC and PA are the same. Some authorities recommend adjusting the length of the transverse cable accordingly, but I believe that this is an over-simplification. With wide- and medium-profile cantilevers, the mechanical advantage of the cantilever unit increases as it travels inward, increasing as the brake shoes wear down. With narrow-profile cantilevers, the mechanical advantage tends to decrease as the cantilever travels inward. The mechanical advantage of a typical cantilever is generally between 1 and 2. Medium-profile cantis tend to have more of this type of mechanical advantage.
#The individual cantilever's mechanical advantage is the ratio between the pivot-cable distance (PC) and the pivot-shoe distance (PS) . The pivot-cable distance (PC) is at its greatest when the anchor angle is 90 degrees, so that PC and PA are the same. Some authorities recommend adjusting the length of the transverse cable accordingly, but I believe that this is an over-simplification. With wide- and medium-profile cantilevers, the mechanical advantage of the cantilever unit increases as it travels inward, increasing as the brake shoes wear down. With narrow-profile cantilevers, the mechanical advantage tends to decrease as the cantilever travels inward. The mechanical advantage of a typical cantilever is generally between 1 and 2. Medium-profile cantis tend to have more of this type of mechanical advantage.
#A larger contribution to the mechanical advantage of a well-adjusted cantilever brake, especially a low-profile one, comes from the transverse cable. The mechanical advantage is strictly determined by the "yoke angle ". The formula is:
#A larger contribution to the mechanical advantage of a well-adjusted cantilever brake, especially a low-profile one, comes from the transverse cable. The mechanical advantage is strictly determined by the "yoke angle ". The formula is:<br>Mechanical Advantage = 1/sin yoke angle<br>For readers without slide rules I have calculated a few examples: [How quaint :-) John Allen]
    Mechanical Advantage = 1/sin yoke angle
#*Yoke Angle
    For readers without slide rules I have calculated a few examples: [How quaint :-) John Allen]
#Yoke Angle
     (Degrees) Mechanical
     (Degrees) Mechanical
     Advantage
     Advantage
15.340

Bearbeitungen