Cookie Consent by Free Privacy Policy Generator

Anonym

Cantilever Geometrie: Unterschied zwischen den Versionen

Aus WikiPedalia
Zeile 68: Zeile 68:
Drei separate Faktoren bestimmen die Hebelübersetzung eines jeden Cantilever-Brems Systems. Die verfügbare Gesamthebelübersetzung ist das Produkt aus diesen drei Werten (also alle Werte miteinander multiplizieren):
Drei separate Faktoren bestimmen die Hebelübersetzung eines jeden Cantilever-Brems Systems. Die verfügbare Gesamthebelübersetzung ist das Produkt aus diesen drei Werten (also alle Werte miteinander multiplizieren):


#Die Hebelübersetzung des Bremshebels ist der erste Faktor. Seine Hebelübersetzung bestimmt sich durch die Entfernung vom Gelenk des Hebels zum Zugende. Zusätzlich spielt noch die Länge des Bremsgriffs vom Gelenk bis zu dem Punkt, an dem die Finger des Fahrers greifen eine Rolle. Typische [[Moiuntainbike]]bremsgirffe haben eine Hebelübersetzung von 3,5, veraltete [[Dropbar]]bremsbgriffe hatten etwa 4 und [[Aero]]dropbarbremsgriffe liegen bei ca. 4,5. Bremsgriffe für [[Direktzugbremse]]n haben ungefähr 2.<br>Shimano [[Servo Wave ®]] und [[Odyssey]] Bremsgriffe haben eine variable Hebelübersetzung, die ansteigt, je mehr man den Griff zieht.<br><br>'''Zwei getrennt zu betrachtende Aspakte des Cantilever Systems bestimmen dessen Habelübersetzung:'''
#Die Hebelübersetzung des Bremshebels ist der erste Faktor. Seine Hebelübersetzung bestimmt sich durch die Entfernung vom Gelenk des Hebels zum Zugende. Zusätzlich spielt noch die Länge des Bremsgriffs vom Gelenk bis zu dem Punkt, an dem die Finger des Fahrers greifen, eine Rolle. Typische [[Mountainbike]]bremsgriffe haben eine Hebelübersetzung von 3,5, veraltete [[Dropbar]]bremsbgriffe hatten etwa 4 und [[Aerobremshebel|Aerodropbarbremsgriffe]] liegen bei ca. 4,5. Bremsgriffe für [[Direktzugbremse]]n haben ungefähr 2.<br>Shimano [[Servo Wave ®]] und [[Odyssey]] Bremsgriffe haben eine variable Hebelübersetzung, die ansteigt, je mehr man den Griff zieht.<br><br>'''Zwei getrennt zu betrachtende Aspekte des Cantilever Systems bestimmen dessen Hebelübersetzung:'''
#The individual cantilever's mechanical advantage is the ratio between the pivot-cable distance (PC) and the pivot-shoe distance (PS) . The pivot-cable distance (PC) is at its greatest when the anchor angle is 90 degrees, so that PC and PA are the same. Some authorities recommend adjusting the length of the transverse cable accordingly, but I believe that this is an over-simplification. With wide- and medium-profile cantilevers, the mechanical advantage of the cantilever unit increases as it travels inward, increasing as the brake shoes wear down. With narrow-profile cantilevers, the mechanical advantage tends to decrease as the cantilever travels inward. The mechanical advantage of a typical cantilever is generally between 1 and 2. Medium-profile cantis tend to have more of this type of mechanical advantage.
#Die Hebelübersetzung eines individuellen Cantilevers ist das Verhältnis zwischen der Gelenk-Zug Abstand (GZ) und der Länge des Gelenk-Schuh Hebelarms (GS). GZ ist am längsten, wenn der Zugklemmwinkel 90° ist. Dann liegen GZ und GK auf einer Linie. Manche Autoritäten empfehlen, die Länge des Querzugs entsprechend der Hebelübersetzung zu wählen. [[Sheldon Brown]] glaubte, das das eine unnötige Vereinfachung ist. Bei Wide- bzw. Mid-Profile Bremsen steigt die Hebelübersetzung, wenn der Bremsschuh nach innen wandert. Sie steigt also mit zunehmendem Bremsenverschleiß. Bei Low Profile Bremsen nimmt die Hebelübersetzung bei gleichen Bedinungen allerdings ab.<br>Die Hebelübersetzung einer typischen Low Profile Cantilever Bremse liegt zwischen 1 und 2. Mid Profile Cantis haben etwas mehr Hebelübersetzung.
#A larger contribution to the mechanical advantage of a well-adjusted cantilever brake, especially a low-profile one, comes from the transverse cable. The mechanical advantage is strictly determined by the "yoke angle ". The formula is:<br>Mechanical Advantage = 1/sin yoke angle<br>For readers without slide rules I have calculated a few examples: [How quaint :-) John Allen]
#Mehr Einfluss auf die Hebelüberstzung einer gut eingestellten Cantilever Bremse (insbesondere bei Low Profile Bremsen) hat der [[Querzug]]. Die Hebelübersetzung wird strikt durch den Querzugträgerwinkel bestimmt.<br>Die Formel hierfür lautet <br><br>''1/sin(Querzugträgerwinkel)''<br><br>Für diejenigen ohne Rechenschieber zur Hand folgen hier einige vorberechnete Werte:
;Querzugwinkel
;Querzugträgerwinkel
{| {{Prettytable|width=20%}}
{| {{Prettytable|width=20%}}
!Winkel!!Hebelübersetzung
!Winkel!!Hebelübersetzung
Zeile 97: Zeile 97:
|0° ||Unendlich!
|0° ||Unendlich!
|}
|}
A 90 degree yoke angle would result from an infinitely long transverse cable, such that each side of the cable was running vertically down from the cable yoke.


A 0 degree yoke angle would represent the shortest possible transverse cable, running in a perfect straight line along the top of the cable yoke.
Zwei Werte sind eher theoretischer Natur, weil man sie in der Praxis so nicht verwirklichen kann:
*Ein 90° Querzugträgerwinkel würde in einem unendlich langen Querzug enden, so dass auf beiden Seiten des [[Querzugträger]]s der Zug vertikal nach unten verlaufen würde.
*Ein 0° Querzugträgerwinkel würde im kürzest möglichen Querzug münden, so dass vom Querzugträger aus der Querzug in einer exakt geraden Linie horizontal wegführen würde.


As you can see from the table, the shorter and straighter the transverse cable, the more difference it makes. This effect is what makes it possible to make a low-profile brake with good stopping power.
Wie man der Tabelle entnehmen kann, ist ein kürzerer und horizontalerer Querzug mit einer höheren Hebelübersetzung gesegnet. Dieser Effekt sorgt dafür, dass auch eine Low Profile Bremse eine sehr gute Bremsleistung erzeugen kann.


==Spezielle Überlegungen zu Low-Profile Cantilevern==
==Spezielle Überlegungen zu Low-Profile Cantilevern==
15.322

Bearbeitungen