Cookie Consent by Free Privacy Policy Generator

Anonym

Cantilever Geometrie: Unterschied zwischen den Versionen

Aus WikiPedalia
→‎Hebelübersetzung: Bild eingefügt
(weiter im text übersetzt)
(→‎Hebelübersetzung: Bild eingefügt)
Zeile 13: Zeile 13:


"Mechanical advantage", or "leverage" is the ratio between how much you get out of a linkage and how much you put in. Mechanical advantage may be looked at as a ratio of forces or as a ratio of distances. Imagine a simple lever with a pivot (fulcrum) 1/3 of the way along it:
"Mechanical advantage", or "leverage" is the ratio between how much you get out of a linkage and how much you put in. Mechanical advantage may be looked at as a ratio of forces or as a ratio of distances. Imagine a simple lever with a pivot (fulcrum) 1/3 of the way along it:
mechanical advantage
[[Bild:mech_adv.gif|center]]
Side B of the lever is twice as long as side A so the mechanical advantage is 2:1 (or 1:2, depending on which way you look at it!)
Side B of the lever is twice as long as side A so the mechanical advantage is 2:1 (or 1:2, depending on which way you look at it!)


Zeile 27: Zeile 27:


The new direct-pull cantilevers, such as Shimano's "V" brakes, also have a fixed mechanical advantage. Since their pivots are below the level of the rim, smaller wheels give more mechanical advantage, rather than less as with caliper brakes. Traditional cantilever brakes, however, allow the mechanic to adjust the mechanical advantage to a considerable extent, mainly by adjusting the length of the transverse cable and the height of the cable yoke.
The new direct-pull cantilevers, such as Shimano's "V" brakes, also have a fixed mechanical advantage. Since their pivots are below the level of the rim, smaller wheels give more mechanical advantage, rather than less as with caliper brakes. Traditional cantilever brakes, however, allow the mechanic to adjust the mechanical advantage to a considerable extent, mainly by adjusting the length of the transverse cable and the height of the cable yoke.
==Gefühl und Funktion==
==Gefühl und Funktion==
With automobile brakes, a nice "hard" pedal feel is a sign that the brakes are in good condition. A soft, "spongy" feel at the brake pedal is a sign of trouble, perhaps air in the hydraulic lines. This is not the case with bicycle brakes. A hard, crisp feel to the brakes on a bicycle may be a sign that the brakes don't have much mechanical advantage. You squeeze them until the brake shoes hit the rim, then they stop. Brakes with a high mechanical advantage will feel "spongy" by comparison, because the large amount of force they deliver to the brake shoes will squash the shoes against the rim, deforming them temporarily under pressure. You can feel this deformation in your fingers. The brakes with the rock-hard feel may seem nice on the work stand or the showroom floor, but when it comes to making the bike actually stop, the spongy set-up will do the job better, with less finger pressure and greater margin for safety in wet conditions.
With automobile brakes, a nice "hard" pedal feel is a sign that the brakes are in good condition. A soft, "spongy" feel at the brake pedal is a sign of trouble, perhaps air in the hydraulic lines. This is not the case with bicycle brakes. A hard, crisp feel to the brakes on a bicycle may be a sign that the brakes don't have much mechanical advantage. You squeeze them until the brake shoes hit the rim, then they stop. Brakes with a high mechanical advantage will feel "spongy" by comparison, because the large amount of force they deliver to the brake shoes will squash the shoes against the rim, deforming them temporarily under pressure. You can feel this deformation in your fingers. The brakes with the rock-hard feel may seem nice on the work stand or the showroom floor, but when it comes to making the bike actually stop, the spongy set-up will do the job better, with less finger pressure and greater margin for safety in wet conditions.
15.340

Bearbeitungen