Fahrradreifen und -schläuche: Unterschied zwischen den Versionen

Aus WikiPedalia
K (Bessere Übersetzung/Verlinkung)
K (Bessere Übersetzung/Verlinkung)
Zeile 130: Zeile 130:
  |-
  |-
  |   
  |   
* ein Autoreifen eine quadratische Kontaktfläche mit der Straße hat und die Vorderseite eine gerade Linie ist. Dadurch kann sich unter dem Reifen sehr leicht Wasser sammeln.
* ein Autoreifen eine quadratische Reifenaufstandsfläche mit der Straße hat und die Vorderseite eine gerade Linie ist. Dadurch kann sich unter dem Reifen sehr leicht Wasser sammeln.
* ein Autoreifen vergleichsweise breit ist und daruntergeratenes Wasser kaum seitlich ausweichen kann, wenn es keine Rillen gibt, die es herausführen.
* ein Autoreifen vergleichsweise breit ist und daruntergeratenes Wasser kaum seitlich ausweichen kann, wenn es keine Rillen gibt, die es herausführen.
* ein Autoreifen meits mit viel weniger Luftdruck gefagren wird als ein Fahrradreifen.
* ein Autoreifen meits mit viel weniger Luftdruck gefagren wird als ein Fahrradreifen.
Zeile 211: Zeile 211:
Betrachten wir zum Beispiel einen Reifen mit rund 25 mm Breite und einem Druck von 7 [[bar]]. Damit liegt auf jedem Zentimeter des Reifens ein Druck von Rund 20 kg an. Jeder Zentimeter der Seitenwand des Reifens muss daher ungefähr die Hälfte dieses Drucks aushalten (rund 10 kg). Im Vergleich dazu müsste ein Reifen von doppelter Breite (50 mm) bei gleichem Reifendruck (7 bar) an den Seitenwänden einen Druck von rund 20 kg aushalten. Infolgedessen würde der breitere Reifen bei gleichem Druck wesentlich härter zu fahren sein und müsste zudem auch deutlich stärker ausgelegt sein.
Betrachten wir zum Beispiel einen Reifen mit rund 25 mm Breite und einem Druck von 7 [[bar]]. Damit liegt auf jedem Zentimeter des Reifens ein Druck von Rund 20 kg an. Jeder Zentimeter der Seitenwand des Reifens muss daher ungefähr die Hälfte dieses Drucks aushalten (rund 10 kg). Im Vergleich dazu müsste ein Reifen von doppelter Breite (50 mm) bei gleichem Reifendruck (7 bar) an den Seitenwänden einen Druck von rund 20 kg aushalten. Infolgedessen würde der breitere Reifen bei gleichem Druck wesentlich härter zu fahren sein und müsste zudem auch deutlich stärker ausgelegt sein.


Der Teil des Reifens, der tatsächlich Kontakt mit dem Boden hat, wird "Kontaktfläche" genannt. Im allgemeinen ist die Fläche der Kontaktfläche direkt proportional zum Gewicht, der auf dem Reifen lastet und invers proportional zum Reifendruck. Zum Beipsiel: Wenn ein Reifen mit einem Gewicht von rund 50 kg belastet wird und mit 7 bar aufgepumpt ist, wird der Reifen an der Kontaktfläche auf ca. 25x25 mm flachgedrückt. Wenn man jetzt den Reifendruck auf 3,5 bar reduziert, vergrößert sich die Kontaktfläche auf ca. 50x50 mm (wenn die Felge dann nicht schon den Boden berührt).
Der Teil des Reifens, der tatsächlich Kontakt mit dem Boden hat, wird [[Reifenaufstandsfläche]] genannt. Im allgemeinen ist die Fläche der Reifenaufstandsfläche direkt proportional zum Gewicht, der auf dem Reifen lastet und invers proportional zum Reifendruck. Zum Beipsiel: Wenn ein Reifen mit einem Gewicht von rund 50 kg belastet wird und mit 7 bar aufgepumpt ist, wird der Reifen an der Reifenaufstandsfläche auf ca. 25x25 mm flachgedrückt. Wenn man jetzt den Reifendruck auf 3,5 bar reduziert, vergrößert sich die Reifenaufstandsläche auf ca. 50x50 mm (wenn die Felge dann nicht schon den Boden berührt).


Eine weit verbreitete Diskussionsgrundlage zwischen Fahrradfahrer ist die Frage, ob ein breiterer Reifen ''bei gleichem Druck'' mehr oder weniger [[Rollwiderstand]] hat als ein schmalerer. Der gleiche Druck muss angenommen werde, da dies wohl akademischer klingt, wenn man diese Variable außer acht lässt. Das ist in der Praxis jedoch nicht realistisch. Kurz beantwortet lautet die Antwort auf die Frage: Ja, ein breiterer Reifen hat bei gleichem Druck einen kleineren Rollwiderstand. In der Praxis hat das allerdings keine Bedeutung. Wenn man zwei Reifen von ungefähr gleichem Aufbau auf diese Weise vergleicht (gleiche Last, gleicher Druck), '''dann hat entweder der breitere Reifen zu viel Reifendruck oder der schmalere Reifen zu wenig!'''
Eine weit verbreitete Diskussionsgrundlage zwischen Fahrradfahrer ist die Frage, ob ein breiterer Reifen ''bei gleichem Druck'' mehr oder weniger [[Rollwiderstand]] hat als ein schmalerer. Der gleiche Druck muss angenommen werde, da dies wohl akademischer klingt, wenn man diese Variable außer acht lässt. Das ist in der Praxis jedoch nicht realistisch. Kurz beantwortet lautet die Antwort auf die Frage: Ja, ein breiterer Reifen hat bei gleichem Druck einen kleineren Rollwiderstand. In der Praxis hat das allerdings keine Bedeutung. Wenn man zwei Reifen von ungefähr gleichem Aufbau auf diese Weise vergleicht (gleiche Last, gleicher Druck), '''dann hat entweder der breitere Reifen zu viel Reifendruck oder der schmalere Reifen zu wenig!'''
Zeile 371: Zeile 371:
Bei Reifen für den Straßeneinsatz ist das eigentlich egal, da das Profilmuster auf hartem Untergrund keine Funktion hat.
Bei Reifen für den Straßeneinsatz ist das eigentlich egal, da das Profilmuster auf hartem Untergrund keine Funktion hat.


Reifen mit "V" Muster sind bei Motorrädern üblich und meistens so montiert, dass die Sptze des "V" als erstes die Straße berührt. So wird das Wasser besser vorwärtig und seitlich vor der Kontaktfläche des Reifens weggedrückt und dient so als Schutz gegen Aquaplaning. Aquaplaning existiert beim Fahrrad nicht, daher gibt es keinen Grund, diese Praxis hier anzuwenden.
Reifen mit "V" Muster sind bei Motorrädern üblich und meistens so montiert, dass die Sptze des "V" als erstes die Straße berührt. So wird das Wasser besser vorwärtig und seitlich vor der Reifenaufstandsfläche des Reifens weggedrückt und dient so als Schutz gegen Aquaplaning. Aquaplaning existiert beim Fahrrad nicht, daher gibt es keinen Grund, diese Praxis hier anzuwenden.


===Geländeeinsatz===
===Geländeeinsatz===

Version vom 11. Oktober 2010, 15:23 Uhr

Sheldon Brown hat über viele Artikel immer wieder Tipps & Tricks zu Reifen und Schläuchen verstreut. An dieser Stelle wird alles zusammengefasst, was man über die Aspekte von Reifen und Schläuchen wissen sollte.

Aufbau des Reifens

Wulstreifen

Konventionelle Reifen, die bei 99% aller Fahrräder verbaut sind, sind Wulstreifen (manchmal auch Drahtreifen genannt). Diese bestehen aus dem eigentlichen im Querschnitt U-förmigen Reifen und einem separaten Schlauch. Die Ränder des Reifens werden in die Kanten der Felge geklemmt und der Luftdruck des Schlauchs drückt alles so fest, dass sich nichts mehr bewegen kann.

Inzwischen sind schlauchlose Reifen vor allem im MTB-bereich verbreitet. Diese setzen spezielle Felgen voraus, die über ein abgedichtetes Ventil und verschlossene Speichenlöcher verfügen, so dass keine Luft entweichen kann.

Viele Leute glauben, dass Reifen aus Gummi gemacht werden, weil es offensichtlich nach Außen so aussieht. Das ist aber sehr vereinfacht. Gummi ist die unwichtigste der drei Komponentem eines Reifens.

Wulst

Der Wulst ist eine der zwei Kanten eines Reifens. Bei den meisten Reifen bestehen diese Kanten aus widerstandsfähigen Stahldrähten. Die Wulste halten den Reifen auf der Felge und sind auf bestimmte Weise das Rückgrat des Reifens. Anstatt Draht findet man heutzutage immer häufiger Kevlar ™-Stränge.

Gewebe

Zwischen den beiden Wulsten ist eine Gewebstruktur eingewoben, die die Karkasse des Reifens bildet. Dies ist das Herz des Reifens, der die Form bestimmt. Die meisten Reifen sind aus Nylonschnur, wenige Reifen aus Polyamiden aufgebaut. Bis in die 1960er Jahre war Baumwolle/Zellstoff verbreitet. Diese ware nicht widerstandsfähig und verrotteten schnell. Manche Schlauchreifen werden weiterhin aus Baumwolle und Seide gefertigt.

Die Gewebeschichten sind nicht untereinander verwoben wie bei Kleidung, sondern verlaufen in Schichten parallel übereinander. Jede Schicht ist orthogonal zur nächsten Schicht gelegt.

Manche Reifen sind aus dicken Fäden, manche aus dünneren hergestellt. Bei dünneren Fäden erhöht sich die Thread-Per-Inch (Fäden pro Zoll) Zahl. Häufig wird diese Zahl als Indikator für die Leistungsfähigkeitd es Reifens hergenommen.

Je höher die TPI-Zahl, desto dünner und flexibler ist die Karkasse. Dünnwandige Reifen sind leichter und bringen einen höheren Rollwiderstand mit. Sie sind leichter zu beschädigen.

Bei Fahrradreifen verlaufen die Fäden des Gewebes diagonal von Wulst zu Wulst. Bei moderne Autoreifen verlaufen diese Fäden auf direktem Wege von Wulst zu Wulst - das nennt man "radial". Bei Radialreifen verlaufen Gürtel als Schichten einmal komplett rund um den Reifen und kreuzen die radialen Schichten.

Man hat versucht Radialreifen für Fahrräder herzustellen. Sie stellten sich jedoch als zu flexibel an den Seitenwänden heraus. Diese Flexibilität führt zu einem unsichern Fahrgefühl - ähnlich einem Reifen mit viel zu wenig Luftdruck.

Bei manchen Reifen verläuft noch ein zusätzlicher Kevlar Gürtel zusätzlich zu den diagonalen Schichten unter der Lauffläche. Dies soll die Pannensicherheit des Reifens erhöhen.

Gummi

Sobald das Gewebe zwischen den Wulsten des Reifens fertig ist, hat der Reifen seine grundsätzliche Form erhalten. Jetzt kann er mit einer Gummimischung überzigen werden. Dies geschieht im Wesentlichen dazu, um das Gewebe zu schützen. Die Gummischichten haben sonst keine strukturelle Funktion.

Die Gummifläche, die in Kontakt mit dem Boden kommt, wird Lauffläche genannt. Dieser Bereich ist aus Gründen der Haltbarkeit für gewöhnlich dicker als die Seitenwände. Manche Reifen habe eine Art 3D-Muster in die Lauffläche modelliert, die die Traktion erhöhen kann.

Die Hersteller mischen verschiedene Additive in ihre Gummimischungen, um bestimmte Traktions- und Verschleißeigenschaften zu erreichen. Eine weichere Mischung hat eine bessere Traktion und dafür höheren Verschleiß. Gummi hat normalerweise eine bräunliche Farbe, jedoch sind viele Reifen inzwischen schwarz, weil ihnen Ruß zugesetzt wird. Ruß erhöht die Haltbarkeit und Traktion des Reifens in der Lauffläche deutlich.

Manche Hersteller ersetzen Ruß durch eine Siliziummischung. Diese Reifen haben meistens eine graue Lauffläche. Ob jetzt Ruß oder Silizium bessere Traktion beisteuern, wird vielen Diskussionsrunden heiß diskutiert. Laufflächen in grau werden für Hallensport oder sonstige überdachte Tätigkeiten bevorzugt, da sie keine schwarzen Streifen auf dem Boden hinterlassen.

Dual Compound-Reifen haben zur Verschleißoptimierung in der Mitte der Lauffläche recht hartes Gummi, welches zur Seite hin immer weicher wird, um die Traktion zu erhöhen. Dadurch will man bessere Kurvenstabilität erreichen, ohne die Lebensdauer der Lauffläche merklich zu verringern.

Manche Reifen sind sogenannte Gumwalls oder Skinwalls. Bei Gumwall-Reifen sind die Seitenwände bräunlich, da hier kein Ruß zugesetzt wurde. Das macht die Reifen etwas flexibler und reduziert den Rollwiderstand. Sheldon Brown gibt an, dass nicht ganz klar ist, inwieweit das einen Unterschied ergibt.

Skinwall-Reifen haben entweder keine oder eine extrem dünne Gummibeschichtung an den Seitenwänden. Auch hier wird die Seitenwand sehr flexibel und der Rollwiderstand soll geringer werden.

Schlauchreifen

Schlauchreifen unterscheiden sich vom konventionellen Wulstreifen dadurch, dass sie keine Wulste haben. Stattdessen sind die Kanten um den Schlauch herum zusammengenäht. Für Schlauchreifen benötigt man spezielle Felgen, auf die die Schlauchreifen mit Felgenkleber befestigt werden.


Früher waren Schlauchreifen auf hochwertigen Rädern sehr verbreitet. Heutzutage gehören sie jedoch zu einer aussterbenden Art, wenn es derzeit auch ein kleines Revival dieser Reifen gibt.

Vorteile von Schlauchreifen Nachteile von Schlauchreifen
  • Schlauchreifen sind etwas leichter als vergleichbare Wulstreifen, da die Wulste fehlen. Dieser Vorteil wird durch den Einsatz von Kevlarwulsten zunichte gemacht.
  • Felgen für Schlauchreifen sind leichter als diejenigen für Wulstreifen, da sie keine Flanken benötigen, die den Reifen an Ort und Stelle halten.
  • Bei Schlauchreifen gibt es so gut wie nie Quetschrisse, da es keine Kanten gibt, wo der Schlauch einklemmt werden könnte.
  • Manche Fahrer berichten, dass man auf Schlauchreifen einen besseren Fahrkomfort und bessere Traktion geniessen soll.
  • Bei einer Reifenpanne kann man einen Schlauchreifen wesentlich schneller Wechseln als den Schlauch eines Wulstreifens.
  • Schlauchreifen sind deutlich teurer als Wulstreifen vergleichbarer Leistung.
  • Schlauchreifen sind viel schwieriger zu reparieren, wenn sie ein Loch haben. Die meisten Besitzer werfen sie in dem Fall einfach weg.
  • Man sollte immer einen Ersatzreifen mit sich tragen, was den Gewichtsvorteil gegenüber Wulstreifen völlig zunichte macht. Das kann man sich nur sparen, wenn ein Materialwagen mit Ersatzrädern/-reifen mitfährt.
  • Wenn man wegen einer Reifenpanne den Schlauchreifen unterwegs wechseln musste, darf man nicht mehr mit Höchstgeschwindigkeit um Kurven fahren. Der Felgenkleber muss vorher mehrere Stunden getrocknet sein.
  • Schlauchreifen sind selten so gut zentriert und rund wie Wulstreifen.
  • Wenn man Schlauchreifen nicht gründlich montiert, können sie von der Felge rollen. Das ist so gut wie immer der Grund für einen ernsthaften Sturz.

Schläuche

Ein Schlauch sieht grundsätzlich wie ein doughnut-förmiger Ballon aus. Er hat ein Ventil zum Aufpumpen. Die einzige wichtige Eigenschaft eines Schlauchs ist es, die Luft zu halten. Er besteht aus Gummi und hat keine starren Strukturen. Wenn man einen Schlauch außerhalb des Reifens aufpumpt, kann er auf die zwei- bis dreifache seiner nominellen Größe anschwellen bevor er platzt. Ohne den Reifen außen herum kann der Schlauch keinem signifikanten Druck widerstehen.

Butyl vs. Latex

Vor dem zweiten Weltkrieg waren Reifen und Schläuche aus Naturlatex hergestellt, das aus tropischen Bäumen gewonnen wurde. Während des Krieges war der Nachschub dieses Rohstoffs nicht mehr gesichert, daher wurde Butyl erfunden. Butyl stellte sich ale sehr erfolgreicher Ersatzstoff heraus, da es für den Einsatzzweck besser war als das bisher verwendete Latex. Inzwischen sind so gut wie alle Reifen aus Butly statt Latex.

Manche Fahrer bevorzugen Latex als Material für ihre Schläuche, da sie etwas leichter als Butylschläcuhe sind. Manche Fahrer glauben, dass der Rollwiderstand bei Latex geringer sei.

Latex ist etwas poröser als Butly. Daher müssen diese Schläuche etwas häufiger auf korrekten Luftdruck kontrolliert und nachgefüllt werden.

Wie ein Reifen die Last verteilt

Weitverbreitet ist der Irrglaube, dass der Reifendruck die Felge hält. Wenn Du genau nachdenkst, merkst Du, dass das nicht sein kann, da der Luftdruck rund um die Felge herum immer gleich bleibt. Wie verteilt dann ein Reifen seine Last?

Die Hauptaufgabe des Luftdrucks im Reifen ist es, den Reifen in Form zu halten, außer an einer Stelle - nämlich dort, wo er den Boden berührt.

An der Kontaktstelle werden Lauffläche und Geweb des Reifens gegen den Untegrund flach gedrückt. Der Luftdruck kann nur direkt nach außen wirken. Darum drückt er an dieser Stelle genau nach unten und sorgt so für eine Balance zwischen Gewicht und Verformung. Der Luftdruck an der Kontaktstelle bringt keinen Beitrag zur Spannung im Gewebe. Die Fläche der Kontaktstelle ist äquivalent zum Gewicht, das von oben drückt, dividiert durch den Luftdruck. Zum Beispiel ist die Fläche bei einem Lutdruck von 50 PSI (ungefähr 3,5 bar) und einem Gewicht von 100 Pfund (ca. 50 kg) ungefähr 5 Quadratcentimeter.

Die Fäden des Reifengewebes können Kräfte nur längs und unter Spannung weiterführen. Der Luftdruck formt diese in eine zirkuläre Kreuz- und Quersektion außer an der Stelle, wo die Reifenaufstandsfläche des Reifens mit dem Boden besteht. Hier wird diese Formation flachgedrückt und an den Seiten werden sie zu einem Bogen mit sehr engem Radius verformt.

An diesen Stellen mit engem Bogen werden die Kräfte zu den Seitenwänden des Reifens geführt, da sie weniger stark nach unten ziehen. So werden die Kräfte gleichmäßig auf die Felge abgeleitet.

Dieser Effekt läßt sich von oben schön in Form einer Ausbeulung beobachten, wenn man auf dem Rad sitzt. Die Kontaktstelle wird flach gedrückt und drumehrum wird der Radius der Seitenwände etwas verkleinert. Der Reifen wird effektiv dünner. Die Spannung der Gewebfäden ist an dieser Stelle leicht geringer, obwohl sie die Last "tragen".

Bei Reifen mit Diagonalschichten wird die Last längs in beide Richtungen des Reifens verteilt. Daher ist die Beule bei Bodenkontakt länger und weniger tief als bei Radialreifen. In den frühen Tagen der Radialreifen bei Autos dachten viele Leute, dass sie Plattfüße am Auto hätten, weil die Beule beim Radialreifen deutlich ausgeprägter ist.

Ein Reifen verteilt die Last also, indem der Druck abwärst reduziert wird. Das ähnelt dem Prinzip eines eingespeichetn Laufrads. Ein eingespeichtes laufrad und der pneumatische Reifen sind zwei Beispiele für vorgespannte bewegliche Strukturen, deren brilliante und nicht direkt intuitive Aspekte perfekt zusammenarbeiten und mehr als das 100-fache des eigenen Gewichts tragen können.

Diagonale Schichten helfen außerdem laterale und Drehmomentlasten zu verteilen, indem sie die Verbindung zwischen der Reifenaufstandsfläche und der Felge triangulieren, so wie die Speichen eines semitangential eingespeichten Laufrads laterale und Drehmomentkräfte verteilen. Bei Schlauchreifen funktionieren die diagonalen Schichten wie eine chniesisches Fingerpuzzle. Der Reifendruck macht den Reifen dicker und damit kürzer, was ihn stärker gegen die Felge drückt.

Traktion

Die Traktion bzw. Haftung bestimmt die Widerstand des Reifens gegen Rutschen bzw. Wegrutschen. Es gibt drei Bereiche, bei denen Traktion eine wichtige Rolle spielt.

  • Bremsen
  • Bergauffahren
  • Kurvenfahren

Unterschiedliche Reifendesigns - insbesondere auf der Lauffläche - können die Traktion verbessern oder verschlechtern.

Drei Eigenschaften beeinflussen die Traktion des Reifens maßgeblich:

Traktion wird zusätzlich beeinflusst durch die An- oder Abwesenheit einer Federung und die Haltung und Technik des Fahrer.

Reifenprofile

Profil fürs Gelände

Profile im Gelände können auf zwei Arten die Traktion verbessern:

  • Bei harten und unebenen Untergründen können sich die Stollen in aus dem Untegrund ragende Auswölbungen "festkrallen" und die Rutschgefahr vermindern.
  • Bei weichen und matschigen Untergründen "stechen" die Stollen in den Untegrund und vergraben sich geradzu und erhöhen so den Grip.

In den späten 1980er Jahren gab es eine Revolution im Profildesign. Den Anfang machte hier der Specialized Ground Control. Dieser Reifen hatte - wie späterer MTB-Reifen auch - große verstärkte Stollen an der Seite des Profils. Die Verstärkungen sollten des Einknicken der Stollen zur Seite hin verhindern. Diese Stollen erhöhten deutlich die Leistung der Reifen in Sand und Matsch. Die Reifenaufstandsfläche mit dem Untergrund wird flach gedrückt und die Stollen werden nach innen gebogen und "greifen" sich wie Zangen den losen Untergrund.

Profil für die Straße

Für den reinen Straßeneinsatz benötigen Reifen keine Art von Profil. Es ist faktisch so, dass der beste Straßenreifen ein Slickreifen ohne jegliches Profil ist!

Dummerweise nehmen viele Leute an, dass ein so glatter Reifen sehr rutschig sein könnte. Daher ist diesem Typ eines naiven Fahrradfahrers ein Slickreifen so gut wie nicht zu verkaufen. Daher sind die meisten Reifenhersteller dazu übergegangen, ein feines Muster auf die Lauffläche des Reifens aufzutragen. Dies wird fast ausschließlich zu Marketing- und kosmetischen Zwecken gemacht. Wenn Du die Oberfläche einer Asphaltstraße untersuchst, wirst Du feststellen, dass diese Oberfläche mehr "Stollen" hat als die Lauffläche eines guten Straßenreifens. Da ein Reifen verformbar ist, nimmt sogar ein Slickreifen die Form des Untergrundes an, wenn er sich bei Kontakt entsprechend eindrückt.

Immer wieder kommt die Frage auf, ob Slickreifen nicht rutschen auf nassen Straßen, Dehnungsfugen, Schienen, Farbe usw. Die Antwort lautet "Ja!", natürlich machen sie das. Aber auch Reifen mit Profil rutschen bei diesen Bedingungen. Profilausprägungen jeglicher Art verbessern diese Eigenschaft nicht im Geringsten.

Aquaplaning

PKW- und LKW-Reifen benötigen ein Profil, da sie einem gefährlichen Effekt namens Aquaplaning ausgesetzt sein können. Das passiert, wenn man in sehr nassen Bedinungen fährt. Hierbei kann der Reifen auf einer Art Wasserkissen aufschwimmen und zu totalem Kontrollverlus führen.

Kraftfahrzeuge kennen Aquaplaning, weil: Fahrräder kennen kein Aquaplaning, weil:
  • ein Autoreifen eine quadratische Reifenaufstandsfläche mit der Straße hat und die Vorderseite eine gerade Linie ist. Dadurch kann sich unter dem Reifen sehr leicht Wasser sammeln.
  • ein Autoreifen vergleichsweise breit ist und daruntergeratenes Wasser kaum seitlich ausweichen kann, wenn es keine Rillen gibt, die es herausführen.
  • ein Autoreifen meits mit viel weniger Luftdruck gefagren wird als ein Fahrradreifen.
  • ein Auto deutlich schneller fahren kann als ein Fahrrad, was dem Wasser noch weniger Zeit gibt, zu entweichen.
  • die Kontaktstelle des Fahrradreifens rundlich ist. Da Fahrräder in Kurven normlerweise seitlich geneigt werden, sind auch die Außenkanten des Reifens rund. Daher wird Wasser leicht auswärts gedrängt.
  • ein Fahrradreifen deutlich schmaler ist und sich so weniger wasser unter dem Reifen sammeln kann.
  • ein Fahradreifen mit seinem vergleichsweise hohen Reifendruck Wasser sehr effizient verdrängen kann.
  • bei sehr hohen Geschwindigkeiten Aquaplaning für Autoreifen möglich aber für Fahrradreifen unmöglich ist.

Selbst bei Automobilen ist Aquaplaning tatsächlich selten. Das Problem ist für landende Flugzeuge wesentlich präsenter. Die Flugzeugindustrie hat das Problem gründlich studiert und ist mit einer Faustformel zur Hand, um das Risiko von Aquaplaning zu verdeutlichen. Diese Faustformel sieht wie folgt aus:

Aquaplaning kmh Formel.png

Mit
v = Geschwindigkeit (in km/h)
p = Reifendruck (in Millibar)

Hier ist eine Tabelle, die sich mit dieser Formel ergibt (Zahlenangaben auf zwei Stellen gerundet; um den Druck in PSI zu erhalten, multipliziere man den Bar-Druck mit 15).

Reifendruck
in bar
Geschwindigkeit
in km/h
8,0 180
7,0 170
6,0 150
5,0 140
4,0 130
3,0 110
2,0 89
1,0 63

Walken

Reifen mit Stollen haben auf hartem Untergund eine schlechte Haftung. Das liegt daran, dass sie sich bei seitlichen Kräften hzur Seite biegen. Das passiert bei einem Reifen ohne Stollen nicht.

Dieses Wegbiegen der Stollen erzeugt Unterbrechungen beim Fahrverhalten. Bei leichten Kurvenkräften ist die Traktion noch in Ordnung. Sobald diese Kräfte ein bestimmtes maß überschreiten, knicken die Stollen weg und ohne Vorwarnung fährt die Haftung zur Hölle.

Kombinationsprofile

Viele Reifenhersteller vermarkten sogenannte Kombinationsprofile für ihre Reifen. Sie sind dazu gedacht, auf Asphalt und außerhalb der Straße zu funktionieren. Generell tun sie das aber nicht.

Das übliche Design hat eine mehr oder weniger glatte Reifenmitte und Stollen an den Seiten. In der Theorie hat man auf Asphalt mehr Haftung, wenn der Reifen recht hart aufgepumpt wird. Die Stollen sollen Offroad zum Einsatz kommen, wo der Reifen dann mit weniger Luftdruck gefahren wird. Die Stollen sollen vor allem bei Kurvenfahrten helfen.

In der Praxis funktioniert das aber mehr schlecht als recht. Kombinationsprofile funktionieren im Gelände recht gut aber auf Asphalt sehr schlecht. Sie sind sehr viel schwerer als normale Straßenreifen und wenn man agressiv in Kurven fährt, können die Stollen zu plötzlichen Kontrollverlust führen. Diese Reifen sind fast genauso schwer und langsam wie richtige Stollenreifen, haben aber keine der günstigen Eigenschaften von glatten Straßenreifen.

Wenn Du die meisten Zeit auf Asphalt fährst und nur gelgentlich Gelände befährst, kann einn Kombinationsprofil am Vorderrad und hinten ein Straßenreifen eine ganz gute Wahl sein.

Größen

Traditionellerweise hat jedes wesentliche Fahrräder produzierende Land sein eigenes System für die Bezeichnung von Reifen- und Felgenmaßen benutzt. Als die Fahrradindustrie internationaler wurde, wurden diese nationalen Maßsysteme zur Grundlage einiger Verwirrung. Das kam vor allem daher, dass Reifen mit anderen Bezeichnungen tatsächlich untereinander austauschbar waren, währen andere mit gleich lautenden Zahlen nicht zueinander passten.

Inzwischen gibt es ein neues internationales System, dass diese Verwirrungen eliminiert, und für ein einheitliches Maßsystem für Reifengrößen sorgt.

Rollwiderstand

Der Rollwiderstand ist die mechanische Reibung, die durch den rollenden Reifen mit dem Untergrund entsteht. Wenn ein Segment des Reifens mit dem Untergrund in Kontakt kommt, wird er dort aus seiner normalen rundlichen Form in eine eher flache Form deformiert. Die vorherige Form nimmt er wieder an, sobald der Reifen sich an der Stelle vom Untergrund löst. Die Deformation des Gummis in diesem Prozess ist das, was die Reibung erzeugt. Ein Reifen mit diagonal laufenden Schichten hat sogar noch zusätzlichen Rollwiderstand durch den "Chinesisches Fingerpuzzle" Effekt der diagonal laufenden Schichten.

Es gibt zwei Wege, diese Reibung zu reduzieren. Jede dieser Wege hat aber auch Nachteile:

  • Je dünner und weicher das Material des Reifens ist, desto flexibler wird er.
    Der Nachteil ist, dass der Reifen anfälliger wird und schneller verschleißt.
  • Je höher der Reifendruck ist, desto weniger wird er verformt.
    Der Nachteil ist, dass bei zu hartem Aufpumpen die Vorteile des pneumatischen Reifens verloren gehen. Der Ritt auf dem Fahrrad wird sehr harsch und die Haftung lässt nach. Zudem benötigen hohe Reifendrücke mehr und widerstandsfähigeres Material am Reifen und stärkere Felgenflanken.
    Der Rollwiderstand lässt theoretisch bei jeder Erhöhung des Reifendrucks nach. Jedoch ist der Rollwiderstand bei korrektem Reifendruck schon so gering, dass die minimal kleinen Rollwiderstandsgewinne die erhöhten Nachteile nicht aufheben können.

Breite und Druck

Reifenbreite und -druck sind untrennbar miteinender verbunden. Es wäre ein schwerer Fehler, sie unabhängig voneineander zu betrachten. Im allgemeinen sollten breitere Reifen mit weniger und schmalrere Reifen mit mehr Druck befüllt werden.

Betrachten wir zum Beispiel einen Reifen mit rund 25 mm Breite und einem Druck von 7 bar. Damit liegt auf jedem Zentimeter des Reifens ein Druck von Rund 20 kg an. Jeder Zentimeter der Seitenwand des Reifens muss daher ungefähr die Hälfte dieses Drucks aushalten (rund 10 kg). Im Vergleich dazu müsste ein Reifen von doppelter Breite (50 mm) bei gleichem Reifendruck (7 bar) an den Seitenwänden einen Druck von rund 20 kg aushalten. Infolgedessen würde der breitere Reifen bei gleichem Druck wesentlich härter zu fahren sein und müsste zudem auch deutlich stärker ausgelegt sein.

Der Teil des Reifens, der tatsächlich Kontakt mit dem Boden hat, wird Reifenaufstandsfläche genannt. Im allgemeinen ist die Fläche der Reifenaufstandsfläche direkt proportional zum Gewicht, der auf dem Reifen lastet und invers proportional zum Reifendruck. Zum Beipsiel: Wenn ein Reifen mit einem Gewicht von rund 50 kg belastet wird und mit 7 bar aufgepumpt ist, wird der Reifen an der Reifenaufstandsfläche auf ca. 25x25 mm flachgedrückt. Wenn man jetzt den Reifendruck auf 3,5 bar reduziert, vergrößert sich die Reifenaufstandsläche auf ca. 50x50 mm (wenn die Felge dann nicht schon den Boden berührt).

Eine weit verbreitete Diskussionsgrundlage zwischen Fahrradfahrer ist die Frage, ob ein breiterer Reifen bei gleichem Druck mehr oder weniger Rollwiderstand hat als ein schmalerer. Der gleiche Druck muss angenommen werde, da dies wohl akademischer klingt, wenn man diese Variable außer acht lässt. Das ist in der Praxis jedoch nicht realistisch. Kurz beantwortet lautet die Antwort auf die Frage: Ja, ein breiterer Reifen hat bei gleichem Druck einen kleineren Rollwiderstand. In der Praxis hat das allerdings keine Bedeutung. Wenn man zwei Reifen von ungefähr gleichem Aufbau auf diese Weise vergleicht (gleiche Last, gleicher Druck), dann hat entweder der breitere Reifen zu viel Reifendruck oder der schmalere Reifen zu wenig!

Ein Reifen sollte unter Last ein wenig nachgeben. Dieses Nachgeben ist der ganze Daseinszweck des pneumatischen Reifens. Wenn Du auf Deinem Fahrrad sitzt, sollten die Reifen sichtbar unter Deinem Gewicht nachgeben. Wenn sie das nicht machen, haben sie zuviel Luftdruck.

Zu wenig Reifendruck Korrekter Reifendruck Zu viel Reifendruck
  • Erhöhter Rollwiderstand
  • Erhöhte Gefahr von Durchschlägen und Quetschrissen
  • Der Reifen tendiert zum schlingern auf der Felge und kann im Extremfall auch von der Felge abspringen. Das ist inbesondere ein Problem von breiten Reifen auf schmalen Felgen.
  • Guter Rollwiderstand
  • Kaum Gefahr von Durchschlägen bei normaler Benutzung
  • Erhöhter Komfort für den Fahrer, weil Unebenheiten durch den Reifen ausgeglichen werden können.
  • Bodenkontakt wird bei leichten Unregelmäßigeiten des Unterdrunds gehalten - dadaurch wird die Bodenhaftung verbessert.
  • Etwas weniger Rollwiderstand
  • Erhöhte Anfälligkeit gegenüber scharfkantigen Steinen oder Kanten
  • Wenig Fahrkomofort außer auf spiegelglattem Untergrund
  • Bodenkontakt kann schon bei leichten Unregelmäßigkeiten kurz verloren gehen, was vor allem beim Kurvenfahren durch die reduzierte Haftung problematisch sein kann.

Druckempfehlungen

Viele Reifen haben einen "Maximaldruck" bzw. eine entsprechende Empfehlung für einen Druckbereich auf der Seitenwand aufgedruckt. Diese Empfehlungen sind vom Hersteller erst nach Konsultation mit Marketing und Rechtsbeistand entstanden.

Die Anwälte (vor allem in den USA) wollen diese Zahlen möglichst konservativ niedrig halten für den Fall, dass der Reifen auf einer defekten oder leicht untermaßigen Felge montiert wird. Die Obergrenze liegt zumeist ungefähr bei der Hälfte des Reifendrucks, der nötig wäre, um den Reifen zum Platzen zu bringen.

Die Marketingabteilung wünscht sich eine möglichst hohe Druckempfehlung, da viele Reifenkäufer die (unzuverlässige) Annahme treffen, dass eine höhere Druckangabe eine höhere Qualität darstellt.

Neulinge nehmen meist diese willkürlichen Einteilungen hin, so als ob sie irgendeine akademische Bedeutung hätten. Meist bekommt man mit diesem groben Ansatz keine Probleme aber dennoch nicht das Optimum der Leistung des Reifens.

Gerissene Fahrradfahrer experimentieren mit verschiedenen Reifendrücken und variieren den Reifendruck je nach Untegrundbeschaffenheit.

Der optimale Reifendruck für einen gegebenen Reifen hängt immer vom Gewicht ab, den der Reifen tragen soll. Daher benötigt natürlich ein schwererer Fahrer einen höheren Reifendruck als ein leichterer bei identischen Reifen.

Da bei den meisten Fahrrädern das Hinterrad wesentlich mehr Gewicht trägt als das Vorderrad, sollte der hintere Reifen immer mit mehr Reifendrzuck gefahren werden als der vordere. Typischerweise beträgt der Unterschied rund 10%.

Geländetypische Untergründe erfordern eine Reduktion des Luftdrucks, um Komfort und Haftung zu erhöhen. Jedoch erhöht man auch die Gefahr von Quetschrissen, wenn man zu geringen Reifendruck nutzt.

Zusätzlich fällt auch die Fahrtechnik des Fahrers vor allem im Gelände ins Gewicht: Erfahrenere Fahrer können sich für einen Augenblick "leichter machen", wenn sie über ein Hindernis hinwegsetzen. Neulinge tendieren eher dazu, im Sattel zu bleiben und das Risiko von Quetschrissen zu vergrößern.

Unten stehende Tabelle basiert auf den Erfahrungen und ein wenig Ausprobieren von Sheldon Brown und soll höchstens als Faustformel verstanden werden. Bitte rechne für Deine eigenen Gewichts-/Reifenmaße die Daten hoch.

Die Reifenbreiten sind in Millimetern angegeben, Druckempfehlungen in Bar (multipliziere mit 15, wenn Du in PSI umrechnen möchtest).

Reifenbreite in mm
Last pro Reifen
in kg
50 37 32 28 25 23 20
50 3,0 4,0 5,0 6,7 7,3 8,0 8,7
35 2,3 3,3 4,3 5,3 6,0 6,7 7,3

Bitte beachte, dass diese Empfehlungen auf die tatsächlichen Reifenbreiten bezogen sind. Viele Reifen werden als breiter verkauft als sie in Wirklichkeit sind.

Wir geben keine Empfehlungen für den richtigen Reifendruck - entsprechende Kontakteversuche sind zwecklos!

Anhänger und Tricycles

Trikes und zweirädrige Anhänger unterscheiden sich wesentlich von Fahrrädern, weil sie sich in Kurven nicht neigen können. Reifenverschleiß wird zumeist durch die Kräfte in Kurvenfahrten erzeugt. Bei einem Fahrrad wirken diese Kräfte auf unetrschiedliche Areale der Lauffläche, je nachdem wie weit man sich in die Kurve legt und wie schnell man fährt.

Bei einem Anhänger oder Trike ist der Verschleiß auf die Mitte der Lauffläche konzentriert. Wenn man hier die Reifen mit zuviel Reifendruck betreibt, laufen die Reifen nur auf der Mitte der Lauffläche und der Verschleiß wird enorm.

Erschwerend kommt hinzu, dass die Ausrichtung der Laufräder nie perfekt sein wird. Daher werden die Reifenpaare immer ein wenig "schleifen". Bei steinharten Reifen erhöht das den Verschleiß noch zusätzlich. Wenn die Reifen weicher sind, könne sie sich leicht seitlich bewegen und das Schleifen ein wenig ausgleichen, ohne die Lauffläche zu verschleißen.

Bei Anhängern kann eine schwerwiegende Überhöhung des Reifendrucks dazu führen, dass der Anhänger sich überschlägt, da die Reifen zum hüpfen neigen, wenn sie auf welligen Untegrund gefahren werden.

Unehrliche Maßsysteme

Der große Konkurrenzdruck hat zu ungenauen Breitenangaben geführt. Das funktioniert so: Stelle Dir vor, Du vertreibst hochperformante Reifen der Größe 700x25 und möchtest wissen, welcher Deiner Wettbewerber den leichtesten Reifen anbietet. Falls also die SchwaMi-Reifenmanufaktur und die CoMax-Reifenfabriken Reifen ähnlicher Qualität und Technologie herstellen und der SchwaMi Reifen wäre tatsächlich ein 700x24 Reifen, der als 700x25 vermarktet würde, wäre der SchwaMi Reifen leichter als der ehrlich als 700x25 ausgezeichnete Reifen von CoMax. Als Selbstverteidigungsmaßnahme würde als CoMax den noch leichteren 700x23 Reifen als 700x25 vermarkten.

In den 1970er und 1980er Jahren beherrschte diese Problematik den Markt. Die Situation wurde so ausufernde, dass sich irgendwann wieder etwas kühlere Köpfe durchsetzten und inzwischen eine starke Tendenz zu ehrlichen Maßsystemen festzustellen ist.

Ungleiche/passende Reifen

Die meisten Fahrräder sind mit identischen Reifen vorne und hinten ausgestattet. Für den allgemeinen Gebrauch ist das richtig. Wenn Du Dein Fahrrad jedoch optinmieren willst, kann es sinnvoll sein, mit unterschiedlichen Reifen zu fahren. Vorder- und Hinterrad tragen unterschiedlichen Lasten und haben unterschiedliche Anforderungen.

Vorne schmaler, hinten breiter

Wenn das Hauptziel Gewichtsersparnis sein soll, sind die Breite und das Gewicht durch den Risiko von Snake Bites limitiert. Da der hintere Reifen mehr Gewicht trägt, kann man am Vorderrad einen etwas schmaleren Reifen fahren als am Hinterrad.

Vorne breiter, hinten schmaler

Ein breiterer Vorderreifen ist bei vielen Anwendungsbeispielen sinnvoll, wenn Komfort und Wendigkeit im Vordergrund stehen. Ein breiterer Reifen hat etwas bessere Haftung in Kurven als ein schmalerer, wenn er den richtigen Reifendruck hat. Ein breiterer Reifen absorbiert Stöße besser.

Sheldon Brown hat bevorzugt breitere Vorderradreifen gefahren, da er schnell Schmerzen in den Handgelenken bekam.

Geländespezialitäten

Fahrräder, die zumeist auf losem Untergrund bewegt werden profitieren oft von einem breiteren Vorderreifen mit einem aggressiven Profil in Verbindung mit einem etwas schmaleren Hinterreifen mit etwas glatterem Profil.

Der breitere Stollenreifen vorne bringt die extrem wichtige Bodenhaftung. Wenn Dein Vorderrad ins Rutschen gerät, führt das so gut wie immer zum Sturz. Der breite Reifen vorne ist bei weichem Untergrund wie Sand oder Matsch essentiell. Wenn das Vorderrad einsinkt und sich festfährt, kommst Du nicht weiter. Wenn das Vorderrad durch die weiche Stell durchkommt, ist alle in Ordnung. Im allgemeinen kann man den hinteren Reifen mit genügend Kraftaufwand hindurchdrücken.

Der schmalere glattere Hinterradreifen hat weniger Rollwiderstand. Da das meiste Gewicht vonm Hinterrad getragen wird, ist der Rollwiderstand hinten wesentlich entscheidender als vorne. Wenn das Hinterrad in Rutschen gerät, ist das unangenehmste, was Dir passieren kann, dass Du absteigen und schiebben musst.

Diese großartige Idee, Reifen zu kombinieren kommt ursprünglich aus der BMX-Szene.

Manche Mountainbikereifen werden in passenden Sets ausgeliefert, bei denen Vorder- und Hinterreifen unterschiedlich sind. Der vordere Reifen hat Stollen, die mehr oder weniger in Fahrtrichtung ausgerichtet sind, um lateralen Grip und bessere Lenkkontrolle zu erreichen. Der hintere Reifen hat travers angeordnete Stollen, die gute Haftung beim Fahren und Bremsen bieten.

Luftlose Reifen

Von allen Erfindungen, die aus der Fahrradindustrie heraus entstanden sind, ist vielleicht keine einzige so bedeutend und nützlich wie der pneumatische Reifen von Dunlop.

Luftlose Reifensysteme sind seit mehr als 100 Jahren völlg veraltet. Es gibt jedoch immer wieder "durchgeknallte" Erfinder, die sie aufleben lassen möchten. Sie sind schwer und äußerst unkomfortabel. Zudem sorgen sie möglicherweise für Schäden an Laufrädern, da sie kaum Stöße abfedern können. Ein pneumatischer Reifen nutzt die gesamte Luft im Reifen als Stoßdämpfer. Luftlose Reifensystem nutzen jedoch nur die Luft, die sich unmittelbar an der Einschlagstelle befindet. Ein pnematischer Reifen kann bei einem Hindernis bis kurz vor der Felge eingedrückt werden, ohne auch nur den kleinsten Schaden anzurichten. Der Reifen ist nicht mehr als ein gummiüberzogener Luftsack. Der Sack wird eingedrückt und die Luft wird komprimiert und drückt den "Sack" wieder in seine Originalform zurück.

Pneumatische Reifen müssen gelegentlich wieder mit Luft befüllt werden und können platt werden. Jedoch überwiegen ihre Vorteile diese Schwierigkeiten bei weitem.

Die luftlose Reifensysteme wurden immer wieder von Trickbetrügern benutzt, um naive Investoren hereinzulegen. Sheldon Brown riet dazu, die seit langem veralteten luftlosen Reifensysteme zu meiden.

Kevlar

Kevlar wird für zwei völlig verschiedene und fast gegensätzliche Einsatzzwecke bei Fahrradreifen eingesetzt. Das führt zu einiger Verwirrung, wenn unbedarfte Leute Kevlar-Reifen kaufen möchten, ohne den Unterscheid zu verstehen.

Kevlar in der Lauffläche

Manche Fahrradreifen haben einen zusätzlichen Kevlargürtel unter der Lauffläche, der die diagonal verlaufenden Schichten ergänzt. Das soll als zusätzlicher Durchstichschutz dienen. Diese Gürtel erhöhen etwas das Gewicht und den Rollwiderstand. Sie beiten jedoch einiges an Gegenwert gegenüber mögliche Gefahren auf der Straße - vor allem bei Galssplittern.

Kevlar für Reifenwulste

Während die geläufigste Ausführung für Wulste immer noch aus Stahldrähten besteht, gibt es inzwischen viele Reifen, die anstelle dessen Kevlarfäden eingezogen haben. Durch den Einsatz von Kevlar kann man beim Reifengewicht rund 50 Gramm pro Reifen sparen. Da Kevlar wesentlich flexibler ist als Stahl, können Reifen mit Kevlarwulsten sehr kompakt zusammengefaltet werden. Das ist parktsich auf Touren oder anderen Einsatzgebieten, bei denen das Mitführen eines Ersatzreifens nötig erscheint.

Laufeigenschaften bei platten Reifen

Falls ein Reifen platzet oder plötzlich an Luft verliert, sollte er fest in der Felge sitzen bleiben, so dass der Fahrradfahrer kontrolliert anhalten kann. Insbesondere der vordere Reifen benötigt einen guten Sitze, damit man Balancieren und Steuern kann. Professor David Gordon Wilson und seine Studenten am Massachusetts Institute of Technology haben geforscht und festgestellt, dass ein fester Sitz zwischen Felge und Reifenwulsten der entscheidende Faktor ist, damit der Reifen nicht von der Felge gezogen wird. Bei lockerem Sitz, kann der Reifen wild von einer Seite zur anderen schlagen. Jedoch sind die aktuellen Standards für die Aufnahme des Reifens in die Felge nicht präözise genug, um diesen festen Sitz zu gewährleisten. Wilsons Artikel mit detaillierten Erläuterungen findet man (in englisch) im Journal Human Power.

Einen Drahtreifen falten

Das funktioniert, wie Sheldon Brown eindrucksvoll in diesem Video demonstriert!

Reifenverschleiß - Wann sollte man den Reifen austauschen?

Viele Fahrradfahrer verschwenden ihr Geld, weil sie perfekt funktionierende Reifen austauschen, nur weil diese alt sind oder die Seitenwände verfärbt sind. Falls Du Deine Reifen austauschen willst, nur weil der alte schäbig aussieht, ist das Deine Entscheidung über Dein Geld. Wenn es Dir aber hauptsächlich um Sicherheit und Funktion geht, gibt es nur zwei Gründe, einen alten Reifen zu tauschen:

  1. Wenn die Lauffläche verschlissen und so dünn geworden ist, dass Du ständig platte Reifen durch kleine Galssplitter oder ähnliches hast oder die Gewebeschichten durchscheinen.
  2. Wenn das Gewebe des Reifens beschädigt ist und der Reifen stellenweise eine unregelmäßige Form annimmt oder der Schlauch sich durch den Reifen drückt.

Risse in der Lauffläche sind harmlos. Kleine Durchstiche, die typischerweise durch Nägel, Reißnägel, Dornen oder Glasspiltter erzeugt werden, sind ebenfalls harmlos für den Reifen, da dieser nicht luftdicht sein muss.

Gumwall-Reifen haben manchmal eine unschöne Bläschenbildung an den Seitenwänden. (Dies ist zumesit auf einen Ozonschaden zurückzuführen. Das kann daher kommen, dass die Reifen in der Nähe der Zentralheizung gelagert wird. Die elektrsichen Pumpen der Zentralheizung können eine größere Menge Ozon freisetzen.) Diese Bläschenbildung ist hässlich aber komprimittiert weder die Sicherheit noch die Zuverlässigkeit des Reifens.

Position der Reifenbeschriftung

Die meisten guten Fahrradmechaniker achten darauf wie die Beschriftung des Reifens orientiert ist. Das übliche Vorgehen ist, die Beschriftung unmittelbar am Ventilloch der Felge nach rechts zeigend zu platzieren. Mancher verteidigt dieses Vorgehen damit, dass diese einheitliche Reifenmontagesystem das Auffinden von Dornen oder Glassplittern im Reifen erleichtert, sobald man das Loch im herausgenommenen Schlauch gefunden hat. Darin liegt durchaus ein Stück Wahrheit begraben. Das Ganze ist aber eher ein Ausdruck von Anspruch an die eigene Arbeit und Detailgenauigkeit.

Laufrichtungsgebundene Profile

Manche Reifen haben ein asymmetrisches Profil (z.B. einem "V" ähnlich), das entweder in Laufrichtung ">" oder gegen die Laufrichtung "<" montiert werden kann. Jetzt stellt sich natürlich die Frage, in welche Richtung sollte das Profil weisen?

Straßeneinsatz

Bei Reifen für den Straßeneinsatz ist das eigentlich egal, da das Profilmuster auf hartem Untergrund keine Funktion hat.

Reifen mit "V" Muster sind bei Motorrädern üblich und meistens so montiert, dass die Sptze des "V" als erstes die Straße berührt. So wird das Wasser besser vorwärtig und seitlich vor der Reifenaufstandsfläche des Reifens weggedrückt und dient so als Schutz gegen Aquaplaning. Aquaplaning existiert beim Fahrrad nicht, daher gibt es keinen Grund, diese Praxis hier anzuwenden.

Geländeeinsatz

Beim Geländeeinsatz bei weichen Untergründen kann es evtl. von Vorteil sein, die Profilrichtung zu beachten. Das ist jedoch überhaupt nicht sicher.

Idealerweise würde man den Vorderreifen auf maximale Haftung in Bremsrichtung ausrichten. Der Hinterreifen sollte maximale Haftung für Fahrkräfte haben. Daraus folgt, dass ein Reifen, der in eine bestimmte Richtung die maximale Haftung bringt, sollte auf dem Vorderreifen anders herum montiert sein als hinten.

Siehe auch

Quelle

Dieser Artikel basiert auf dem Artikel Bicycle Tires and Tubes von der Website Sheldon Browns. Originalautor des Artikels ist Sheldon Brown.